本书将带领读者学习如何实施各种机器学习技术及其日常应用的开发。本书分为9章,从易于掌握的语言基础数据和数学模型开始,向读者介绍机器学习领域中使用的各种库和框架,然后通过有趣的示例实现回归、聚类、分类、神经网络等,从而解决如图像分析、自然语言处理和时间序列数据的异常检测等实际问题。 本书适合机器学习的开发人员、数据分析人员、机器学习领域的从业人员,以及想要学习机器学习的技术爱好者阅读。使用任何脚本语言的编程人员都可以阅读本书,但如果熟悉Python语言的话,将有助于充分理解本书的内容。
DEMO
资源下载
下载价格10 积分
云用户(年)免费
立即购买